
TWMS J. Pure Appl. Math. V.11, N.1, 2020, pp.109-118

A REAL GENERALIZATION OF THE DASS-GUPTA FIXED POINT

THEOREM

MUHAMMAD NAZAM1, HASSEN AYDI2, MUHAMMAD ARSHAD3

Abstract. In this paper, we investigate the existence of a unique fixed point of self-mappings

satisfying the dualistic Dass-Gupta contractions defined on a complete dualistic partial metric

space under the influence of convergence comparison property. As an application, we demon-

strate the existence and uniqueness of the solution of functional equations in dynamic program-

ming.
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1. Introduction

Matthews [12] introduced the partial metric space and generalized the Banach fixed point

theorem. The notions such as convergence, completeness, Cauchy sequence in the setting of

partial metric spaces, can be found in [1-6, 9-11] and references there in. On the other hand,

Neill [16] did one significant change to the definition of the partial metric by extending its

range from [0,∞) to (−∞,∞) = R. The partial metric with this extended range is known as

a dualistic partial metric. Oltra et al. [15] established the criteria for convergence of sequences

and completeness in the dualistic partial metric spaces and generalized the fixed point result

presented by Matthews.

In this paper, we shall consider the fixed point theorem of the Dass-Gupta type (Theorem 1.1

below) and investigate its validity in dualistic partial metric spaces (Theorem 3.1 given below).

We claim that our work is a real generalization of Theorem 1.1. Recently in [14, 17] established

some new fixed point theorems on dualistic rational contraction.

Dass-Gupta [8] presented the following fixed point theorem.

Theorem 1.1. Let T : X → X be a self-mapping defined on a complete metric space (X, d).

Suppose there exista α, β ≥ 0 with α+ β < 1 such that

d(T (x), T (y)) ≤ αd(y, T (y))(1 + d(x, T (x)))

1 + d(x, y)
+ βd(x, y),

for all x, y ∈ X. Then T has a unique fixed point.
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2. Preliminaries

Matthews [12] generalized the notion of a metric as follows:

Definition 2.1. [12], Let X be a nonempty set. The mapping p : X × X → [0,∞) satisfying

the following axioms:

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y);

(p2) p(x, x) ≤ p(x, y);

(p3) p(x, y) = p(y, x);

(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z), for all x, y, z ∈ X,

is called a partial metric on X. The pair (X, p) is called a partial metric space.

Neill [16] changed the definition of the partial metric p by considering its range as (−∞,∞) = R.
The modified partial metric p with extended range is known as a dualistic partial metric. We

denote it as p∗.

Definition 2.2. [16], Let X be a nonempty set. The mapping p∗ : X ×X → R satisfying, for

all x, y, z ∈ X, the following axioms:

(p∗1) x = y ⇔ p∗(x, x) = p∗(y, y) = p∗(x, y);

(p∗2) p∗(x, x) ≤ p∗(x, y);

(p∗3) p∗(x, y) = p∗(y, x);

(p∗4) p∗(x, z) + p∗(y, y) ≤ p∗(x, y) + p∗(y, z),

is called a dualistic partial metric and the pair (X, p∗) is known as a dualistic partial metric space.

If (X, p∗) is a dualistic partial metric space, then mapping dp∗ : X ×X → R+ defined by

dp∗(x, y) = p∗(x, y)− p∗(x, x), for all x, y ∈ X. (1)

is called an induced quasi-metric on X such that τ(p∗) = τ(dp∗). Moreover, dsp∗(x, y) =

max{dp∗(x, y), dp∗(y, x)} defines a metric on X (the induced metric).

Remark 2.1. Unlike other metrics, in dualistic partial metric p∗(x, y) = 0 does not imply

x = y. Indeed, p∗(−1, 0) = 0 and 0 ̸= −1. This situation creates a problem in obtaining a

fixed point of a self-mapping in dualistic partial metric space. For the solution of this problem

we introduce convergence comparison property (defined below) and use it along with axioms (p∗2)

and (p∗1) to get a fixed point.

Example 2.1. Define the mapping p∗ : R × R → R by p∗(x1, x2) = max{x1, x2}. It is easy to

check that p∗ satisfies (p∗1)− (p∗4) and hence p∗ is a dualistic partial metric on R. Note that p∗

does not define a partial metric on R due to the fact that p∗(−m,−m) = −m for m > 0.

Example 2.2. Let (X, p) be a partial metric space. The mapping p∗ : X ×X → R defined by

p∗(x, y) = p(x, y)− p(x, x)− p(y, y) for all x, y ∈ X,

satisfies the conditions (p∗1) − (p∗4) and hence defines a dualistic partial metric on X. We note

that p∗(x, y) may have negative values.

Example 2.3. Let X = R. Define the mapping p∗ : X ×X → R by

p∗(x, y) =

{
|x− y|, if x ̸= y,

−b, if x = y; b > 0.

The axioms (p∗1), (p
∗
2) and (p∗3) can be proved immediately. We prove axiom (p∗4) in details. If

x ̸= y = z, then

p∗(x, z) ≤ p∗(x, y) + p∗(y, z)− p∗(y, y) implies |x− z| = |x− y|.
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If x = y ̸= z, then

p∗(x, z) ≤ p∗(x, y) + p∗(y, z)− p∗(y, y) implies |x− z| = |y − z|.
If x = y = z, then

p∗(x, z) ≤ p∗(x, y) + p∗(y, z)− p∗(y, y) implies −b = −b.

If x ̸= y ̸= z, then

p∗(x, z) ≤ p∗(x, y) + p∗(y, z)− p∗(y, y) implies |x− z| ≤ |x− y|+ |y − z|+ b.

Thus, the axiom (p∗4) holds in all cases. Hence (X, p∗) is a dualistic partial metric space.

Neill [16] established that each dualistic partial metric p∗ on X generates a T0 topology τ [p∗] on

X having bases the family of p∗-balls {Bp∗(x, ϵ) : x ∈ X, ϵ > 0} where

Bp∗(x, ϵ) = {y ∈ X : p∗(x, y) < ϵ+ p∗(x, x)}.

The following and Lemma describe the convergence criteria established by Oltra et al. [15].

Definition 2.2.[15] Let (X, p∗) be a dualistic partial metric space.

(1) A sequence {xn}n∈N in (X, p∗) is called a Cauchy sequence if

lim
n,m→∞

p∗(xn, xm) exists and is finite.

(2) A dualistic partial metric space (X, p∗) is said to be complete if every Cauchy sequence

{xn}n∈N in X converges, with respect to T [p∗], to a point υ ∈ X such that

p∗(x, x) = lim
n,m→∞

p∗(xn, xm).

Lemma 2.1.[15] Let (X, p∗) be a dualistic partial metric space.

(1) Every Cauchy sequence in (X, dsp∗) is also a Cauchy sequence in (X, p∗).

(2) A dualistic partial metric (X, p∗) is complete if and only if the induced metric space

(X, dsp∗) is complete.

(3) A sequence {xn}n∈N in X converges to a point υ ∈ X with respect to T [(dsp∗)] if and

only if

lim
n→∞

p∗(υ, xn) = p∗(υ, υ) = lim
n→∞

p∗(xn, xm).

3. Main results

Dass-Gupta[8] have employed a rational type contractive condition on T to find a unique fixed

point of T in the context of a metric space. We introduce the convergence comparison property

[in short: CCP] and impose it to find the fixed point of a self-mapping T satisfying the dualis-

tic Dass-Gupta contractive condition (defined below) in a complete dualistic partial metric space.

Definition 3.1. Let (X, p∗) be a dualistic partial metric space and T : X → X be a mapping.

We say that T has a convergence comparison property (CCP) if for every sequence {xn} in X

such that xn → x, T satisfies

p∗(x, x) ≤ p∗(T (x), T (x)).

Example 3.1.Let X = R. Define p∗∨ : R× R → R by

p∗∨(x, y) = max{x, y} for all x, y ∈ R.

It is easy to check that (X, p∗∨) is a dualistic partial metric space. Consider any sequence {xn}
converging to x in (X, p∗∨). Define T : X → X by T (x) = ex. We have x ≤ ex for any x ∈ X,

that is, p∗∨(x, x) ≤ p∗∨ (T (x), T (x)), i.e., T satisfies (CCP).
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Definition 3.2. Let T : X → X be a self-mapping define on a dualistic partial metric space

(X ̸= ϕ, p∗). We say the mapping T is a dualistic Dass-Gupta contraction, if there exists α, β ≥ 0

with α+ β < 1 such that

|p∗(T (x), T (y))| ≤
∣∣∣∣αp∗(y, T (y))(1 + p∗(x, T (x)))

1 + p∗(x, y)

∣∣∣∣+ β|p∗(x, y)|, (2)

for all x, y ∈ X.

Theorem 3.1. Let T be a dualistic Dass-Gupta contraction defined on a complete dualistic

partial metric space (X, p∗). If T is continuous and satisfies (CCP), then T has a unique fixed

point in X and the Picard iterative sequence {Tn(x0)}n∈N with initial point x0, converges to the

fixed point.

Proof. Let x0 be an initial point of X and define Picard iterative sequence {xn} by

xn = T (xn−1) for all n ∈ N.

If there exists a positive integer i such that xi = xi+1, then xi = xi+1 = T (xi), so xi is a fixed

point of T . In this case, proof is finished. Now, we suppose that xn ̸= xn+1 for all n ∈ N, then
by (2), we have

|p∗(T (xn−1), T (xn))| ≤
∣∣∣∣αp∗(xn, T (xn))(1 + p∗(xn−1, T (xn−1)))

1 + p∗(xn−1, xn)

∣∣∣∣+ β|p∗(xn−1, xn)|

≤
∣∣∣∣αp∗(xn, xn+1)(1 + p∗(xn−1, xn))

1 + p∗(xn−1, xn)

∣∣∣∣+ β|p∗(xn−1, xn)|

≤ |αp∗(xn, xn+1)|+ β|p∗(xn−1, xn)|

≤ β

1− α
|p∗(xn−1, xn)|.

If we set λ =
β

1− α
, then 0 < λ < 1, and so

|p∗(xn, xn+1)| ≤ λ|p∗(xn−1, xn)|
≤ λ(λ|p∗(xn−2, xn−1)|)
...

≤ λn|p∗(x0, x1)|.

This implies that

|p∗(xn+k−1, xn+k)| ≤ λn+k−1|p∗(x0, x1)|, for all n, k ∈ N. (3)

Again by (2), we have

|p∗(T (x0), T (x0))| ≤
∣∣∣∣αp∗(x0, T (x0))(1 + p∗(x0, T (x0)))

1 + p∗(x0, x0)

∣∣∣∣+ β|p∗(x0, x0)|

≤
∣∣∣∣αp∗(x0, x1)(1 + p∗(x0, x1))

1 + p∗(x0, x0)

∣∣∣∣+ β|p∗(x0, x0)|

≤ |αp∗(x0, x1)(1 + p∗(x0, x1))|+ β|p∗(x0, x0)|,

that is,

|p∗(x1, x1)| ≤ αh(1 + h) + βκ.
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where we have set |p∗(x0, x1)| = h and |p∗(x0, x0)| = κ. Similarly,

|p∗(x2, x2)| ≤ αλh(1 + λh) + αβh(1 + h) + β2κ,

|p∗(x3, x3)| ≤ αλ2h(1 + λ2h) + αβλh(1 + λh) + αβ2h(1 + h) + β3κ,

...

|p∗(xn, xn)| ≤ αλn−1h(1 + λn−1h) + αβλn−2h(1 + λn−2h)

+ αβ2λn−3h(1 + λn−3h) + · · ·+ αβn−1h(1 + h) + βnκ.

This implies that

lim
n→∞

p∗(xn, xn) = 0. (4)

By definition of dp∗ and (3), we have

dp∗(xn, xn+1) ≤ |p∗(xn, xn+1)|+ |p∗(xn, xn)|,

that is,

dp∗(xn, xn+1)) ≤ λn|p∗(x0, x1)|+ |p∗(xn, xn)|
≤ λnh+ αλn−1h(1 + λn−1h) + αβλn−2h(1 + λn−2h)

+ αβ2λn−3h(1 + λn−3h) + · · ·+ αβn−1h(1 + h) + βnκ

≤ λnh+ µn,

where µn = αλn−1h(1 + λn−1h) + αβλn−2h(1 + λn−2h) + αβ2λn−3h(1 + λn−3h)

+ · · ·+ αβn−1h(1 + h) + βnκ. Moreover, we have

dp∗(xn+k−1, xn+k) ≤ λn+k−1h+ µn+k−1, for all n, k ∈ N. (5)

We show that {xn} is Cauchy sequence in (X, dsp∗). By triangle property and (5), we have

dp∗(xn, xn+k) ≤ dp∗(xn, xn+1) + dp∗(xn+1, xn+2) + · · ·+ dp∗(xn+k−1, xn+k)

≤ λnh+ µn + λn+1h+ µn+1 + · · ·+ λn+k−1h+ µn+k−1

≤ λn

1− λ
h+

µn

1− µ
.

Since limn→∞ λn = 0 and limn→∞ µn = 0, we get

lim
n→∞

dp∗(xn, xn+k) = 0. (6)

Similarly,

dp∗(xn+1, xn)) ≤ λn|p∗(x0, x1)|+ |p∗(xn+1, xn+1)|
≤ λnh+ µn+1.

Thus,

dp∗(xn+k, xn+k−1) ≤ λn+k−1h+ µn+k for all n, k ∈ N. (7)

By triangle property and (7), we have

dp∗(xn+k, xn) ≤ dp∗(xn+k, xn+k−1) + dp∗(xn+k−1, xn+k−2) + · · ·+ dp∗(xn+1, xn)

≤ λn+k−1h+ µn+k + λn+k−2h+ µn+k−1 + · · ·+ λnh+ µn+1

≤ λn

1− λ
h+

µn+1

1− µ
.

Since limn→∞ λn = 0 and limn→∞ µn = 0, we have limn→∞ dp∗(xn+k, xn) = 0.

Hence, limn→∞ dsp∗(xn, xn+k) = 0. This shows that {xn} is a Cauchy sequence in (X, dsp∗). Since
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(X, dsp∗) is a complete metric space, therefore {xn} converges to a point in X, say υ, that is

limn→∞ dsp∗(xn, υ) = 0. By Lemma 2.1, one writes

lim
n→∞

p∗(υ, xn) = p∗(υ, υ) = lim
n,m→∞

p∗(xn, xm). (8)

By (4) and (6), we have

lim
n,m→∞

p∗(xn, xm) = lim
n→∞

p∗(xn, xn) = 0; m = n+ k.

Consequently, {xn} is Cauchy sequence in (X, p∗). By (8), we have

lim
n→∞

p∗ (υ, xn) = p∗(υ, υ) = 0. (9)

This shows that {xn} converges to υ in (X, p∗). By (2), we get

|p∗(xn+1, T (υ))| ≤
∣∣∣∣αp∗(υ, T (υ))(1 + p∗(xn, T (xn)))

1 + p∗(xn, υ)

∣∣∣∣+ β|p∗(xn, υ)|

≤
∣∣∣∣αp∗(υ, T (υ))(1 + p∗(xn, xn+1))

1 + p∗(xn, υ)

∣∣∣∣+ β|p∗(xn, υ)|.

As n → ∞, we get p∗(υ, T (υ)) = 0. Since T has (CCP),

0 = p∗(υ, υ) ≤ p∗(T (υ), T (υ)).

By (p∗2), we deduce that

p∗(T (υ), T (υ)) ≤ p∗(υ, T (υ)) = 0.

This shows that p∗(T (υ), T (υ)) = 0. Thus,

p∗(T (υ), T (υ)) = p∗(υ, υ) = p∗(υ, T (υ)),

and axiom (p∗1) leads us to conclude that υ = T (υ) and hence υ is a fixed point of T .

To prove the uniqueness, suppose that ω is another fixed point of T , then T (ω) = ω and

D(ω, ω) = 0. Using (2), we obtain

|p∗(υ, ω)| = |p∗(T (υ), T (ω))| ≤
∣∣∣∣αp∗(ω, T (ω))(1 + p∗(υ, T (υ)))

1 + p∗(υ, ω)

∣∣∣∣+ β|p∗(υ, ω)|.

≤
∣∣∣∣αp∗(ω, T (ω))(1 + p∗(υ, T (υ)))

1 + p∗(υ, ω)

∣∣∣∣+ β|p∗(υ, ω)|

≤ β|p∗(υ, ω)|,

This implies that υ = ω, which proves the uniqueness of υ. �

Corollary 3.1.[15, Theorem 2.3]; Let (X, p∗) be a complete dual partial metric space and T :

X → X be a continuous mapping. Suppose there exists β ∈ [0, 1) such that

|p∗(T (x), T (y))| ≤ β|p∗(x, y)|,

for all x, y ∈ X. Then T has a unique fixed point υ. Moreover, p∗(υ, υ) = 0 and the Picard

iterative sequence {Tn(x)}n∈N converges to υ with respect to τ(dsp∗) for every x ∈ X.

Proof. Set α = 0 in Theorem 3.1. �

Corollary 3.2.[13] Let T : X → X be a self-mapping on a complete partial metric space (X, p).

Assume there exists α, β ≥ 0 with α+ β < 1 such that

p(T (x), T (y)) ≤ αp(y, T (y))(1 + p(x, T (x)))

1 + p(x, y)
+ βp(x, y),

for all x, y ∈ X. Then T has a fixed point in X.
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Proof. Since the restriction of a dualistic partial metric p∗ to R+
0 , which is p∗|R+

0
= p, is a partial

metric, arguments follow the same lines as in the proof of Theorem 3.1. �

The following example elucidates our results.

Example 3.1. Let X = R. Define p∗∨ : X ×X → R by p∗∨(x, y) = x ∨ y, for all x, y ∈ X. Note

that (X, p∗∨) is a complete dualistic partial metric space. Let T : X → X be given by

T (x) =
x

2
for all x ∈ X.

Clearly, T is a continuous mapping. We shall show that for all x, y ∈ X, (2) is satisfied.

Without loss of generality, we can assume that x ≥ y. Note that

|p∗∨(T (x), T (y))| ≤
∣∣∣∣αp∗∨(y, T (y))(1 + p∗∨(x, T (x)))

1 + p∗∨(x, y)

∣∣∣∣+ β|p∗∨(x, y)|,

is equivalent to

∣∣∣p∗∨(x2 , y2)∣∣∣ ≤
∣∣∣∣∣∣
αp∗∨(y,

y

2
)(1 + p∗∨(x,

x

2
))

1 + p∗∨(x, y)

∣∣∣∣∣∣+ β|p∗∨(x, y)|. (10)

Take α = 1
3 and β = 1

2 . We have the following cases:

If x, y ≥ 0, then (10) is equivalent to |x
2
| ≤ α|y|+ β|x|, which holds.

If x, y < 0, then (10) is equivalent to |x
2
| ≤ α|y

2
|+ β|x|, which is satisfied.

If x > 0 and y < 0, then (10) is equivalent to |x
2
| ≤ α|y

2
|+ β|x|, which is verified.

Thus, all the conditions of Theorem 3.1 are satisfied. Moreover, x = 0 is the unique fixed point

of T .

The following example emphasizes the use of absolute value functions in the contractive condi-

tion (2).

Example 3.2. Let X = (−1, 0] and p∗∨ : X × X → R be defined as p∗∨(x, y) = x ∨ y, for all

x, y ∈ X. Note that (X, p∗∨) is a complete dual partial metric space. Let T : X → X be given by

T (x) =
x

2
for all x ∈ X.

The inequality ∣∣∣x
2

∣∣∣ ≤ α

∣∣∣∣y(x+ 2)

4(x+ 1)

∣∣∣∣+ β|x|,

holds for all x, y ∈ X and for some choice of α, β such that α + β < 1. Thus, the contractive

condition

|p∗∨(T (x), T (y))| ≤
∣∣∣∣αp∗∨(y, T (y))(1 + p∗∨(x, T (x)))

1 + p∗∨(x, y)

∣∣∣∣+ β|p∗∨(x, y)|,

is satisfied and x = 0 is the unique fixed point of T . However, note that for x = −3
4 , y = −1

2 ,

α = 2
5 and β = 1

3 , the contractive condition

p∗∨(T (x), T (y)) ≤
αp∗∨(y, T (y))(1 + p∗∨(x, T (x)))

1 + p∗∨(x, y)
+ βp∗∨(x, y),

does not hold. Hence Corollary 3.2 is not applicable.
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4. Application

As an application of Theorem 3.1, we show the existence and uniqueness of the solution of a

functional equation. First, we introduce some notations for the sake of convenience.

S = State space, W = Decision space,

B(S) = Space of bounded functions, g : S ×W → R,

F : S ×W × R → R, ϕ : S ×W → S.

We shall prove the existence and uniqueness of the solution of a functional equation appearing

in dynamic programming (for example, see [7]):

u(x) = sup
y∈W

{g(x, y) + F (x, y, u(ϕ(x, y)))}, for all x ∈ S. (11)

We observe that the space (B(S), ∥.∥∞) endowed with the norm defined by

d(u, v) = ∥u− v∥∞ = sup
x∈S

|u(x)− v(x)| for all u, v ∈ B(S),

is a Banach space. Given the dualistic metric as

p∗(u, v) = d(u, v)− c, for all u, v ∈ B(S),

where c > 0.

Lemma 4.1.[7] Let G,H : S → R be two bounded functions. Then

| sup
x∈S

G(x)− sup
x∈S

H(x)| ≤ sup
x∈S

|G(x)−H(x)|.

Lemma 4.2. [7] Assume that

(1) g and F are bounded functions;

(2) there exists k > 0 such that for all t, r ∈ R, x ∈ S and y ∈ W ,

|F (x, y, t)− F (x, y, r)| ≤ k|t− r|.

Then the operator R : B(S) → B(S) defined by

(Ru)(x) = sup
y∈W

{g(x, y) + F (x, y, u(ϕ(x, y)))},

is well defined.

Now, we present the main result.

Theorem 4.1. Assume that (1) and (2) in Lemma 4.2 are satisfied. Suppose that

sup
y∈W

|F (x, y, u)− F (x, y, v)|+ c ≤
∣∣∣∣αp∗(u,Ru)(1 + p∗(v,Rv))

1 + p∗(u, v)

∣∣∣∣+ β|p∗(u, v)|. (12)

Then the functional equation (11) has a unique solution.

Proof. Let R : B(S) → B(S) be an operator defined as in Lemma 4.2. We show that R satisfies

the contractive condition (2). By Lemma 4.1, for u, v ∈ B(S).

|(Ru)(x)− (Rv)(x)|
= | sup

y∈W
{g(x, y) + F (x, y, u(ϕ(x, y)))} − sup

y∈W
{g(x, y) + F (x, y, v(ϕ(x, y)))}|

≤ sup
y∈W

|g(x, y) + F (x, y, u(ϕ(x, y)))− g(x, y)− F (x, y, v(ϕ(x, y)))|

≤ sup
y∈W

|F (x, y, u(ϕ(x, y)))− F (x, y, v(ϕ(x, y)))|.
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Therefore,

|p∗(Ru,Rv)| = | sup
x∈S

|(Ru)(x)− (Rv)(x)| − c|

≤ sup
x∈S

|(Ru)(x)− (Rv)(x)|+ c

≤ sup
y∈W

|F (x, y, u(ϕ(x, y)))− F (x, y, v(ϕ(x, y)))|+ c.

We get using (12),

|p∗(Ru,Rv)| ≤
∣∣∣∣αp∗(u,Ru)(1 + p∗(v,Rv))

1 + p∗(u, v)

∣∣∣∣+ β|p∗(u, v)|.

Hence, R satisfies all conditions of Theorem 3.1, so there exists a unique solution of (11), say

u0 ∈ B(S) such that Ru0 = u0. �

5. Conclusions

The unique fixed point of self-mapping satisfying the Dass-Gupta type contraction can be

obtained under the effect of the dualistic partial metric, if we assume Convergence Comparison

Property in Theorem 3.1.
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